Review on Database

Management System
Anthony

Database

A collection of data (Structured and Unstructured).
» Organized as records.

« Relationship between records.!

UNIVERSITY

Database Management Systems

DBMS is a collection of interrelated data and /—A’PP7 :&P§§>
a set of programs to access those data.

"a system to create,

The primary goal of a DBMS is to provide a DBMS manipulate, access databases
way to store and retrieve database (medials Jccess 1o dhe datay”
information that is both convenient and

efficient e =
D B "a collection of structure data"

PACE

UNIVERSITY

Database-System Applications

DBMS arose in 1960s in response to the computerized management of commercial data. They are :

« Highly valuable,
 Relatively large, and
 Accessed by multiple users and applications, often at the same time.

 Key to the management of complexity is the concept of abstraction.

Abstraction

. Management of complexity.

. Through abstraction DBMS makes it possible for any enterprise to combine data of
various types into a unified repository.

. Sales

PACE

UNIVERSITY

. Manufacturing

. Banking

. Web-based service
. Document Database
. Navigation systems

. As database systems became more sophisticated, better languages were developed for
programmers to use in interacting with the data

Modes

Two modes in which databases are used:
* The first mode is to support online transaction processing
« The second mode is to support data analytics called online analytical processing

PACE

UNIVERSITY

Purpose of Database Systems

« Data redundancy and inconsistency
« Difficulty in accessing data.

« Data isolation.

* Integrity problems.

« Atomicity problems.

« Concurrent-access anomalies.

« Security problems

View of Data

Data Models:
Underlying the structure of a database is the data model

PACE

UNIVERSITY

Relational Model:
Uses a collection of tables to represent both data and the relationships among those data
Entity-Relationship Model:

The entity-relationship (E-R) data model uses a collection of basic objects, called entities,
and relationships among these objects

Semi-structured Data Model:

The semi-structured data model permits the specification of data where individual data items
of the same type may have different sets of attributes.

Object-Based Data Model
Objects Based data model is well integrated into relational databases

Database Languages

 data-definition language (DDL) - to specify the database schema

« data-manipulation language (DML) to express database queries and updates Retrieval of
information stored in the database.

PACE

UNIVERSITY

Insertion of new information into the database.
Deletion of information from the database.
Modification of information stored in the database

» Procedural DMLs require a user to specify what data are needed and how to get those data.

« Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what data are
needed without specifying how to get those data.

Database Languages

The SQL Data-Manipulation Language

« The SQL query language is nonprocedural. A query takes as input several tables (possibly only one)
and always returns a single table.

- Database Access from Application Programs

PACE

UNIVERSITY

« SQL does not support action such as input from users, output to displays, or communication over
the network. Such computations and actions must be written in a host language, such as
C/C++,Java, or Python, with embedded SQL queries that access the data in the database

Database Engine

« Storage Manager
* The Query Processor

« Transaction Management

PACE

UNIVERSITY

Database and Application Architecture

UNIVERSITY

nalve uscrs
{(t=llcrs. ageonis,
we b uscrs)

sophisticasced bl
uscrs _—
(analysis)

application

Programmers administrators

Database and Application Architecture

4 \ / \
; ! I \
i user _ { user :
- [F— client : — :
I | |
| | |
| : .
; I S . l
| application , i | application client |
\ 1/ ‘\ I'
_________________ ________‘_.______/
network network
f/ et arinsiasinabatl ¥ | nulenieateniutinans \\ I, >~ ‘\\
- % |
: . | application server | |
| | |
| database system } :
server | |
| u database system [
| :)
\ /. '\ __________________ /
(a) Two-tier architecture (b) Three-tier architecture

PACE

UNIVERSITY

Database Users and Administrators

e Database Users

« Database Administrator : A person who has such central control over the system is called a database
administrator (DBA).

PACE

UNIVERSITY

SQL

o

Overview [

DDL

[INTEGRITY }

L TRAN CONTROL }

L AUTHORIZATION }

EMBEDDED/DYNAMIC

PACE

UNIVERSITY

SQL Data Definition
 —

Operations like create alter
drop against the database

Sources . D e ki)

(front End Application)

DDL | ———p

UNIVERSITY

DDL vs DML

UNIVERSITY

DDL

SQL Commands that helps in
defining database schemas

Stands for Data Definition
Language

Create, drop, alter are some
DDL commands

Commands affect the entire
database or the table

PACE

UNIVERSITY

DML

SQL Commands that helps to
retrieve and manage data in
relational databases.

Stands for Data Manipulation
Language

Insert, update, delete and
select are some commands.

Commands affect one or more
records in a table

msert

update

delete

select

SQL Statements can not be SQL statements can be rolled
rolled back back

PACE

UNIVERSITY

Data Types

UNIVERSITY

i bit, tinyint, smallint, int,
bigint, decimal, numeric, float, real

Numeric

Date, Time, Datetime,

- _
Date/Time Timestamp, Year

Char, Varchar,

Character/String — Ivarchar (max), Text

NChar, NVarchar,

Unicode Character/String —TNViichar (max), NText

Binary, Varbinary,

Binary Varbinary (max), image
) | Clob, Blob,
Miscellaneous "I XML. JSON

PACE

UNIVERSITY

Schema

—_| Albums ¥
— ‘ Albumld INT
— > | > AbumName VARCHAR(255)
— — — — —j<g © DateReleased DATETIME

D D I |
. . [» Artistld INT :
>
— —_— l » Genreld INT |
l |
— >
| |
I oa—— + +
| Genre v —_| Artists v
> > :
Genreld INT Artistld INT
* - Genre VARCHAR(255) ArtistName VARCHAR(255)
— coEEEE———— ‘
> >
» —
i<
>

UNIVERSITY

Database Vs Schema

UNIVERSITY

PACE

UNIVERSITY

Course

Course_name

Student

Course ID
Department Schema

N\

Grade

ID
Semester

Course
Grade

Data Base

Name
ID
Course
Semester

Keys

S ' ~rtistiD
ArtistBiography I GenrelD s
ArtistPicture YearOfRelease 1

NumberOfTracks
Price .
AlbumCover

[- forionkey

PACE

UNIVERSITY

Primary Key Vs Foreign Key

A specific choice of a minimal set of A field or collection of fields in one
attributes or columns that uniquely table that uniquely identifies a row

specify a tuple or a row in a table of another table or the same table
Related to a single table Related to two tables

Value can not be null Value can be null

Can not have duplicate values Can have duplicate values

There can be a single primary key in There can be a multiple foreign keys
a table in a table

PACE

UNIVERSITY

Used to identify the records of the Used to link two tables together.
table uniquely

Basic Structure of SQL Queries

« The basic structure of an SQL query consists of three clauses:
» select

» from

* where

« The select clause is used to list the attributes desired in the result of a query.

« The from clause is a list of the relations to be accessed in the evaluation of the query. The from
clause by itself defines a Cartesian product of the relations listed in the clause.

« The where clause is a predicate involving attributes of the relation in the from clause.

PACE

UNIVERSITY

selectA, A4,,....4
fromr,, ry,....1,
where P;

n

PACE

UNIVERSITY

Basic Structure of SQL Queries

SELECT

name

FROM

WHERE

ID name dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

Srinivasan
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

PACE

UNIVERSITY

Instructor

Result of “select name from instructor”.

SQL Queries

* Queries on a Single Relation

Queries can be performed on a single relation / table.
select name

from instructor
where dept_name = "'Comp. Sci.' and salary > 70000;

* Queries on Multiple Relations
Queries often need to access information from multiple relations.

select name, instructor.dept_name, building
from instructor, department
where instructor.deptname= department.dept_name;

PACE

UNIVERSITY

Queries On Single Relation

UNIVERSITY

ID name dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

PACE

UNIVERSITY

Instructor

select depti_name
from instructor:

depi_name

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

Result of “select depiname from instructor”.

select distinct depi_name
from instructor:;

depiname

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
Elec. Eng.

Result of “select depiname from instructor”.

PACE

UNIVERSITY

SQL Queries

for each tuple 7, in relation r,
for each tuple 7, in relation r,

for each tuple 7, in relation r,,
Concatenate #,, 1,, ...,1,, into a single tuple 7
Add 1 into the result relation

In general, the meaning of an SQL query can be understood as follows:

1. Generate a Cartesian product of the relations listed in the from clause.
2. Apply the predicates specified in the where clause on the result of Step 1.
3. For each tuple in the result of Step 2, output the attributes (or results of expressions)specified in the

select clause.

PACE

UNIVERSITY

Additional Basic Operations

The additional basic operations that are supported in SQL are:
 The Rename Operation

String Operations

Attribute Specification in the Select Clause

Ordering the Display of Tuples

Where-Clause Predicates

The Rename Operation:

« The ‘as’clause can appear in both the select and from clauses.

PACE

UNIVERSITY

select name as instructor_name. course_id
from instructor, teaches
where instructor.ID= teaches.ID:

select 7.name. S.course_id
from instructor as T, teaches as S
where 7.1D= S.ID;

 Here ‘T’ and ‘S’ are declared as aliases

String Operations

« SQL specifies strings by enclosing them in single quotes.
‘Scalable Databases’

« A ssingle quote character that is part of a string can be specified by using two single quote
characters.

PACE

UNIVERSITY

It"s right’
* Functions on character strings.

Functions on character strings

« Concatenating (“II')

» extracting substrings using ‘substring’ (string, start position, number of characters)
* length of strings (len())

» converting strings to uppercase (upper(s)) or lower case (lower(s))

* Removing spaces at the end of the string (using trim(s))

« Pattern matching ‘like’ and Pattern mismatching ‘not like’. We describe patterns by using two
special characters:

» Percent (%): The % character matches any substring. « Underscore (): The character matches
any character.

* 'Intro%' matches any string beginning with “Intro”.
* '%Comp%' matches any string containing “Comp” as a substring, for example,

PACE

UNIVERSITY

 'Intro. to Computer Science', and 'Computational Biology'.
« ' "matches any string of exactly three characters.
« %' matches any string of at least three characters.

Ordering the Display of Tuples

« SQL offers the user some control over the order in which tuples in a relation are displayed.

* The order by clause causes the tuples in the result of a query to appear in sorted order.

select name select *
Romimsiructor from instructor
where depi_name = 'Physics :

order by salary desc, name asc;

order by name;

PACE

UNIVERSITY

Where-Clause Predicates

« SQL includes a between comparison operator to simplify where clauses that specify that a value be

less than or equal to some value and greater than or equal to some other value.
select name
from instructor
where salary between 90000 and 100000;

* not between comparison operator.

« Tuple comparison select name, course id from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, 'Biology');

Set Operations

« The SQL which correspond to the mathematical set operations u, N, and - are:
* The Union Operation

PACE

UNIVERSITY

* The Intersect Operation

» The Except Operation

« Each of the above operations automatically eliminates duplicates.
» To retain all duplicates use the

* union all,

* intersect all

» except all.

Set Operations

» Find courses that ran in Fall 2017 or in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017) union
(select course_id from section where sem ='Spring' and year = 2018)

* Find courses that ran in Fall 2017 and in Spring 2018

PACE

UNIVERSITY

(select course _id from section where sem ="Fall' and year = 2017)

intersect
(select course _id from section where sem ='Spring' and year = 2018)

* Find courses that ran in Fall 2017 but not in Spring 2018

(select course id from section where sem = 'Fall' and year = 2017) except
(select course _id from section where sem ='Spring' and year = 2018)

Null Values

* ltis possible for tuples to have a null value, denoted by null, for some of their attributes
 null signifies an unknown value or that a value does not exist.

» The result of any arithmetic expression involving null is null
 Example: 5 + null returns null

« The predicate is null can be used to check for null values.
« Example: Find all instructors whose salary is null. select name from instructor where salary is null

PACE

UNIVERSITY

« The predicate is not null succeeds if the value on which it is applied is not null.

Null Values

« SQL treats as unknown the result of any comparison involving a null value (other than
predicates is null and is not null).

« Example: 5 < null or null <> null or null = null

» The predicate in a where clause can involve Boolean operations (and, or, not); thus the
definitions of the Boolean operations need to be extended to deal with the value
unknown.

* and : (true and unknown) = unknown, (false and unknown) = false,

(unknown and unknown) = unknown

« or: (unknown or true) = true,

(unknown or false) = unknown
(unknown or unknown) = unknown

Result of where clause predicate is treated as false if it evaluates to unknown

PACE

UNIVERSITY

Aggregate Functions

These functions operate on the multiset of values of a column of a relation, and return a value
* Average: avg

e Minimum: min

« Maximum: max

« Total: sum

e Count: count

- Basic Aggregation
« Aggregation with Grouping
« The Having Clause

- Aggregation with Null and Boolean Values

PACE

UNIVERSITY

Basic Aggregation

» Find the average salary of instructors in the Computer Science
department

» select avg (salary) from instructor where dept _name='Comp. Sci.’;

» Find the total number of instructors who teach a course in the Spring
2018 semester

» select count (distinct /D) from teaches where semester = 'Spring' and
year = 2018;

* Find the number of tuples in the course relation
» select count (*) from course;

Aggregation with Grouping

» Find the average salary of instructors in each department

PACE

UNIVERSITY

» select dept name, avg (salary) as avg salary from instructor group by

dept_name avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. 80000
Finance 85000
History 61000
Music 40000
Physics 91000

dept _name,;

ID name dept_name salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | EIl Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

PACE

UNIVERSITY

Aggregation with Grouping

 Attributes in select clause outside of aggregate functions must
appear in group by list

« [* erroneous query */ select dept_name, ID, avg (salary) from
instructor group by dept _name;

PACE

UNIVERSITY

The Having Clause

 Find the names and average salaries of all departments whose average salary is greater than
42000

select dept _name, avg (salary) as avg_salary
from instructor group by dept name having
avg (salary) > 42000;

Note: predicates in the having clause are applied after the formation of groups whereas predicates in
the where clause are applied before forming groups

PACE

UNIVERSITY

Nested Subqueries

« SQL provides a mechanism for the nesting of subqueries. A subquery is a select-from-where
expression that is nested within another query.

» The nesting can be done in the following SQL query

select A4, Ao, ..., Ap
fromr, rp, ..., I'm
where P

as follows:
 From clause: rican be replaced by any valid subquery
* Where clause: P can be replaced with an expression of the form: B <operation> (subquery)
B is an attribute and <operation> to be defined later.
» Select clause:
A; can be replaced be a subquery that generates a single value.

PACE

UNIVERSITY

Set Membership

» Find courses offered in Fall 2017 and in Spring 2018

select distinct course id
from section
where semester = 'Fall' and year= 2017 and
course_id in (select course id
from section
where semester = 'Spring' and year= 2018);

» Find courses offered in Fall 2017 but not in Spring 2018

select distinct course id
from section
where semester = 'Fall' and year= 2017 and
course_id not in (select course id
from section
where semester = 'Spring' and year= 2018);

PACE

UNIVERSITY

Set Membership

« Find names of instructors with salary greater than that of some (at least one) instructor in the
Biology department.

select distinct T.name from
instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology";

« Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology');

PACE

UNIVERSITY

Set Comparison —

"some” Clause

* Find names of instructors with salary greater than that of some (at least one) instructor
in the Biology department.

select distinct T.name from
instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology’;

« Same query using > some clause

PACE

UNIVERSITY

Set Comparison —

select name

from instructor

where salary > some (select salary from instructor
where dept name =
'‘Biology");

PACE

UNIVERSITY

Set Comparison —

"some” Clause

0
(5 < some) = true
* F <comp>some r 0 0¢0 rsuch (read: 5 < some tuple in the relation) that (F <comp>t)
Where <comp> can be: 00 00 00 =0 > 5
N 6
(5 < some) = false 5

PACE

UNIVERSITY

Set Comparison —

0

(5 = some) = true 5

0

(5 0 some) = true (since 0 O 5) 5

(=some) O in
However, (O some) O not in

"all” Clause

Find the names of all instructors whose salary is greater than the salary of all instructors in
the Biology department.

PACE

UNIVERSITY

Set Comparison —

select name
from instructor
where salary > all (select salary from
instructor
where dept name = 'Biology');

PACE

UNIVERSITY

Definition of "all” Clause

e F <comp>allr O0¢t0r(F<comp>t)

0
(5 < all) = false

5

6 | 6
(5 < all) =true

4 10
(5 = all) = false 5

UNIVERSITY

(5 O all) = true (since 5 0 4 and 5 0 6)

(O all) O not in
However, (= all) O in

Test for Empty Relations

» The exists construct returns the value true if the argument subquery is
nonempty.

e existsrd0rd0 @

e notexistsrdr=¢

PACE

UNIVERSITY

Use of "exists” Clause

* Yet another way of specifying the query “Find all courses taught in both the Fall 2017 semester and
in the Spring 2018 semester”

select course_id
from section as S
where semester = 'Fall' and year = 2017 and
exists (select * from sectionas T
where semester = 'Spring' and year= 2018

and S.course id = T.course _id);

« Correlation name — variable S in the outer query

« Correlated subquery — the inner query

PACE

UNIVERSITY

Use of "not exists” Clause

» Find all students who have taken all courses offered in the Biology department.

select distinct S./D, S.name
from student as S
where not exists ((select course_id
from course where
dept_name = 'Biology")
except
(select T.course id
from takesas T
where S.ID = T.ID));

* First nested query lists all courses offered in Biology
* Second nested query lists all courses a particular student took

PACE

UNIVERSITY

* NotethatX-Y=0 0O0X0OY
* Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples

« The unique construct tests whether a subquery has any duplicate tuples in its result.

» The unique construct evaluates to “true” if a given subquery contains no duplicates .

» Find all courses that were offered at most once in 2017 select T.course id

from course as T
where unique (select R.course id
from section as R
where T.course id= R.course id
and R.year = 2017);

PACE

UNIVERSITY

Subqueries in the Form Clause

« SQL allows a subquery expression to be used in the from clause

« Find the average instructors’ salaries of those departments where the average salary is greater than $42,000.”
select dept_name, avg salary
from (select dept_name, avg (salary) as avg salary

from instructor group by dept _name)
where avg salary > 42000;

* Note that we do not need to use the having clause

» Another way to write above query

select dept name, avg_salary
from (select dept _name, avg (salary)
from instructor group by
dept_name)
as dept_avg (dept_name, avg_salary)

PACE

UNIVERSITY

where avg salary > 42000;

With Clause

» The with clause provides a way of defining a temporary relation whose definition is available only
to the query in which the with clause occurs.

* Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select department.name from
department, max_budget
where department.budget = max_budget.value;

PACE

UNIVERSITY

Complex Queries using With Clause

 Find all departments where the total salary is greater than the average of the total salary
at all departments

with dept _total (dept_name, value) as
(select dept _name, sum(salary)
from instructor group by
dept_name),
dept total _avg(value) as
(select avg(value)
from dept total)
select dept _name from
dept total, dept _total avg

PACE

UNIVERSITY

where dept total.value > dept total avg.value;

Scalar Subquery

« Scalar subquery is one which is used where a single value is expected
« List all departments along with the number of instructors in each department select dept name,

(select count(*) from
instructor
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

* Runtime error if subquery returns more than one result tuple

PACE

UNIVERSITY

Modification of the Database

» Deletion of tuples from a given relation.
* Insertion of new tuples into a given relation
» Updating of values in some tuples in a given relation

PACE

UNIVERSITY

Deletion

+ Delete all instructors delete from instructor

» Delete all instructors from the Finance department
delete from instructor where dept name=
'Finance’;

» Delete all tuples in the instructor relation for those
instructors associated with a department located in
the Watson building.

delete from instructor
where dept name in (select dept name

PACE

UNIVERSITY

from department where
building = "Watson');

Deletion

» Delete all instructors whose salary is less than the average salary of instructors delete from
instructor

where salary < (select avg (salary) from
instructor);

* Problem: as we delete tuples from instructor, the average salary changes
 Solution used in SQL.:
1. First, compute avg (salary) and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or retesting the tuples)

PACE

UNIVERSITY

Insertion

* Add a new tuple to course insert into course values ('CS-
437', 'Database Systems', 'Comp. Sci.', 4);

« or equivalently

insert into course (course _id, title, dept_name, credits)
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

» Add a new tuple to student with tot creds set to null insert
into student values ('3003', 'Green', 'Finance’, null);

PACE

UNIVERSITY

Insertion

« Make each student in the Music department who has earned more than 144 credit hours an
instructor in the Music department with a salary of $18,000.

insert into instructor select ID, name,
dept_name, 18000
from student
where dept name = Music' and total cred > 144;

» The select from where statement is evaluated fully before any of its results are inserted into the
relation.

Otherwise queries like insert into table1

select * from table1 would cause problem

PACE

UNIVERSITY

Updates

* Give a 5% salary raise to all instructors update instructor
set salary = salary * 1.05

» Give a 5% salary raise to those instructors who earn less than
70000 update instructor set salary = salary * 1.05
where salary < 70000;

» Give a 5% salary raise to instructors whose salary is less than
average update instructor

set salary = salary * 1.05 where
salary < (select avg (salary)
from instructor);

PACE

UNIVERSITY

Updates

* Increase salaries of instructors whose salary is over $100,000 by 3%, and all others by a 5% -
Write two update statements: update instructor set salary = salary * 1.03 where salary >

100000;

update instructor set salary
= salary * 1.05 where
salary <= 100000;

* The order is important
« Can be done better using the case statement (next slide)

PACE

UNIVERSITY

Case Statement for Conditional Updates

« Same query as before but with case statement update

instructor

set salary = case when salary <= 100000 then salary *
1.05 else salary * 1.03
end

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students update student S

set fot_cred = (select sum(credits)
from takes, course
where takes.course id = course.course id and

PACE

UNIVERSITY

S.ID= takes.ID.and
takes.grade <> 'F' and takes.grade is not null);

» Sets tot _creds to null for students who have not taken any course
 Instead of sum(credits), use:

case when sum(credits) is not null then
sum(credits) else 0 end

END OF SESSION

PACE

UNIVERSITY

