

 CS673 - Scalable Databases

Review on Database
Management System

Anthony

Database
• A collection of data (Structured and Unstructured).

• Organized as records.

• Relationship between records.1

1 With permission from Kaleema

CS673 - Scalable Databases

Database Management Systems

DBMS is a collection of interrelated data and

a set of programs to access those data.

The primary goal of a DBMS is to provide a

way to store and retrieve database

information that is both convenient and

efficient

CS673 - Scalable Databases

Database-System Applications

DBMS arose in 1960s in response to the computerized management of commercial data. They are :

• Highly valuable,

• Relatively large, and

• Accessed by multiple users and applications, often at the same time.

• Key to the management of complexity is the concept of abstraction.

Abstraction
• Management of complexity.

• Through abstraction DBMS makes it possible for any enterprise to combine data of

various types into a unified repository.

• Sales

CS673 - Scalable Databases

• Manufacturing

• Banking

• Web-based service

• Document Database

• Navigation systems

• As database systems became more sophisticated, better languages were developed for

programmers to use in interacting with the data

Modes

Two modes in which databases are used:

• The first mode is to support online transaction processing

• The second mode is to support data analytics called online analytical processing

CS673 - Scalable Databases

Purpose of Database Systems

• Data redundancy and inconsistency

• Difficulty in accessing data.

• Data isolation.

• Integrity problems.

• Atomicity problems.

• Concurrent-access anomalies.

• Security problems

View of Data
Data Models:

Underlying the structure of a database is the data model

CS673 - Scalable Databases

• Relational Model:

Uses a collection of tables to represent both data and the relationships among those data

• Entity-Relationship Model:

The entity-relationship (E-R) data model uses a collection of basic objects, called entities,

and relationships among these objects

• Semi-structured Data Model:

The semi-structured data model permits the specification of data where individual data items

of the same type may have different sets of attributes.

• Object-Based Data Model

Objects Based data model is well integrated into relational databases

Database Languages

• data-definition language (DDL) - to specify the database schema

• data-manipulation language (DML) to express database queries and updates Retrieval of

information stored in the database.

CS673 - Scalable Databases

Insertion of new information into the database.

Deletion of information from the database.

Modification of information stored in the database

• Procedural DMLs require a user to specify what data are needed and how to get those data.

• Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what data are

needed without specifying how to get those data.

Database Languages

The SQL Data-Manipulation Language

• The SQL query language is nonprocedural. A query takes as input several tables (possibly only one)

and always returns a single table.

• Database Access from Application Programs

CS673 - Scalable Databases

• SQL does not support action such as input from users, output to displays, or communication over

the network. Such computations and actions must be written in a host language, such as

C/C++,Java, or Python, with embedded SQL queries that access the data in the database

Database Engine

• Storage Manager

• The Query Processor

• Transaction Management

CS673 - Scalable Databases

Database and Application Architecture

CS673 - Scalable Databases

CS673 - Scalable Databases

Database and Application Architecture

CS673 - Scalable Databases

Database Users and Administrators

• Database Users

• Database Administrator : A person who has such central control over the system is called a database
administrator (DBA).

CS673 - Scalable Databases

SQL

 Overview DML

CS673 - Scalable Databases

 EMBEDDED/DYNAMIC

DDL

INTEGRITY

TRAN CONTROL

AUTHORIZATION

CS673 - Scalable Databases

SQL Data Definition

CS673 - Scalable Databases

DDL vs DML

CS673 - Scalable Databases

DDL DML

SQL Commands that helps in

defining database schemas

SQL Commands that helps to

retrieve and manage data in

relational databases.

Stands for Data Definition

Language

Stands for Data Manipulation

Language

Create, drop, alter are some

DDL commands

Insert, update, delete and

select are some commands.

Commands affect the entire

database or the table

Commands affect one or more

records in a table

CS673 - Scalable Databases

SQL Statements can not be

rolled back

SQL statements can be rolled

back

CS673 - Scalable Databases

Data Types

CS673 - Scalable Databases

CS673 - Scalable Databases

Schema

CS673 - Scalable Databases

Database Vs Schema

CS673 - Scalable Databases

Grade

ID

Semester

Course

Grade

Course

Course_name

Course_ID

Department

Student

Name

ID

Course

Semester

Schema

Data Base

CS673 - Scalable Databases

Keys

CS673 - Scalable Databases

Primary Key Vs Foreign Key
Primary Key Foreign Key

A specific choice of a minimal set of

attributes or columns that uniquely

specify a tuple or a row in a table

A field or collection of fields in one

table that uniquely identifies a row

of another table or the same table

Related to a single table Related to two tables

Value can not be null Value can be null

Can not have duplicate values Can have duplicate values

There can be a single primary key in

a table

There can be a multiple foreign keys

in a table

CS673 - Scalable Databases

Used to identify the records of the

table uniquely

Used to link two tables together.

Basic Structure of SQL Queries

• The basic structure of an SQL query consists of three clauses:

• select

• from

• where

• The select clause is used to list the attributes desired in the result of a query.

• The from clause is a list of the relations to be accessed in the evaluation of the query. The from

clause by itself defines a Cartesian product of the relations listed in the clause.

• The where clause is a predicate involving attributes of the relation in the from clause.

CS673 - Scalable Databases

CS673 - Scalable Databases

Basic Structure of SQL Queries

SELECT

FROM

WHERE

Instructor

CS673 - Scalable Databases

SQL Queries

• Queries on a Single Relation

Queries can be performed on a single relation / table.

• Queries on Multiple Relations

Queries often need to access information from multiple relations.

CS673 - Scalable Databases

Queries On Single Relation

CS673 - Scalable Databases

 Instructor

CS673 - Scalable Databases

CS673 - Scalable Databases

SQL Queries

In general, the meaning of an SQL query can be understood as follows:

1. Generate a Cartesian product of the relations listed in the from clause.

2. Apply the predicates specified in the where clause on the result of Step 1.

3. For each tuple in the result of Step 2, output the attributes (or results of expressions)specified in the

select clause.

CS673 - Scalable Databases

Additional Basic Operations

The additional basic operations that are supported in SQL are:

• The Rename Operation

• String Operations

• Attribute Specification in the Select Clause

• Ordering the Display of Tuples

• Where-Clause Predicates

The Rename Operation:

• The ‘as’ clause can appear in both the select and from clauses.

CS673 - Scalable Databases

• Here ‘T’ and ‘S’ are declared as aliases

String Operations

• SQL specifies strings by enclosing them in single quotes.

‘Scalable Databases’

• A single quote character that is part of a string can be specified by using two single quote

characters.

CS673 - Scalable Databases

'It''s right’

• Functions on character strings.

Functions on character strings
• Concatenating (“ ”)

• extracting substrings using ‘substring’ (string, start position, number of characters)

• length of strings (len())

• converting strings to uppercase (upper(s)) or lower case (lower(s))

• Removing spaces at the end of the string (using trim(s))

• Pattern matching ‘like’ and Pattern mismatching ‘not like’. We describe patterns by using two

special characters:

• Percent (%): The % character matches any substring. • Underscore (): The character matches

any character.

• 'Intro%' matches any string beginning with “Intro”.

• '%Comp%' matches any string containing “Comp” as a substring, for example,

CS673 - Scalable Databases

• 'Intro. to Computer Science', and 'Computational Biology'.

• ‘___' matches any string of exactly three characters.

• ‘___ %' matches any string of at least three characters.

Ordering the Display of Tuples

• SQL offers the user some control over the order in which tuples in a relation are displayed.

• The order by clause causes the tuples in the result of a query to appear in sorted order.

CS673 - Scalable Databases

Where-Clause Predicates

• SQL includes a between comparison operator to simplify where clauses that specify that a value be

less than or equal to some value and greater than or equal to some other value.

• not between comparison operator.

• Tuple comparison select name, course_id from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, 'Biology');

Set Operations

• The SQL which correspond to the mathematical set operations , ∩, and − are:

• The Union Operation

CS673 - Scalable Databases

• The Intersect Operation

• The Except Operation

• Each of the above operations automatically eliminates duplicates.

• To retain all duplicates use the

• union all,

• intersect all

• except all.

Set Operations

• Find courses that ran in Fall 2017 or in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017) union

(select course_id from section where sem = 'Spring' and year = 2018)

• Find courses that ran in Fall 2017 and in Spring 2018

CS673 - Scalable Databases

(select course_id from section where sem = 'Fall' and year = 2017)

intersect

(select course_id from section where sem = 'Spring' and year = 2018)

• Find courses that ran in Fall 2017 but not in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017) except

(select course_id from section where sem = 'Spring' and year = 2018)

Null Values

• It is possible for tuples to have a null value, denoted by null, for some of their attributes

• null signifies an unknown value or that a value does not exist.

• The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

• The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null. select name from instructor where salary is null

CS673 - Scalable Databases

• The predicate is not null succeeds if the value on which it is applied is not null.

Null Values

• SQL treats as unknown the result of any comparison involving a null value (other than

predicates is null and is not null).

• Example: 5 < null or null <> null or null = null

• The predicate in a where clause can involve Boolean operations (and, or, not); thus the

definitions of the Boolean operations need to be extended to deal with the value

unknown.

• and : (true and unknown) = unknown, (false and unknown) = false,

(unknown and unknown) = unknown

• or: (unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

• Result of where clause predicate is treated as false if it evaluates to unknown

CS673 - Scalable Databases

Aggregate Functions

These functions operate on the multiset of values of a column of a relation, and return a value

• Average: avg

• Minimum: min

• Maximum: max

• Total: sum

• Count: count

• Basic Aggregation

• Aggregation with Grouping

• The Having Clause

• Aggregation with Null and Boolean Values

CS673 - Scalable Databases

Basic Aggregation

• Find the average salary of instructors in the Computer Science

department

• select avg (salary) from instructor where dept_name= 'Comp. Sci.';

• Find the total number of instructors who teach a course in the Spring

2018 semester

• select count (distinct ID) from teaches where semester = 'Spring' and

year = 2018;

• Find the number of tuples in the course relation

• select count (*) from course;

Aggregation with Grouping

• Find the average salary of instructors in each department

CS673 - Scalable Databases

• select dept_name, avg (salary) as avg_salary from instructor group by

dept_name;

CS673 - Scalable Databases

Aggregation with Grouping

• Attributes in select clause outside of aggregate functions must

appear in group by list

• /* erroneous query */ select dept_name, ID, avg (salary) from
instructor group by dept_name;

CS673 - Scalable Databases

The Having Clause

• Find the names and average salaries of all departments whose average salary is greater than

42000

select dept_name, avg (salary) as avg_salary

from instructor group by dept_name having

avg (salary) > 42000;

Note: predicates in the having clause are applied after the formation of groups whereas predicates in

the where clause are applied before forming groups

CS673 - Scalable Databases

Nested Subqueries
• SQL provides a mechanism for the nesting of subqueries. A subquery is a select-from-where

expression that is nested within another query.

• The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

• From clause: ri can be replaced by any valid subquery

• Where clause: P can be replaced with an expression of the form: B <operation> (subquery)

B is an attribute and <operation> to be defined later.

• Select clause:

Ai can be replaced be a subquery that generates a single value.

CS673 - Scalable Databases

Set Membership
• Find courses offered in Fall 2017 and in Spring 2018

select distinct course_id

from section
where semester = 'Fall' and year= 2017 and

course_id in (select course_id
from section
where semester = 'Spring' and year= 2018);

• Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id

from section
where semester = 'Fall' and year= 2017 and

course_id not in (select course_id
from section
where semester = 'Spring' and year= 2018);

CS673 - Scalable Databases

Set Membership

• Find names of instructors with salary greater than that of some (at least one) instructor in the

Biology department.

select distinct T.name from

instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology';

• Same query using > some clause

select name

from instructor
where salary > some (select salary

from instructor
where dept name = 'Biology');

Set Comparison –

CS673 - Scalable Databases

“some” Clause

• Find names of instructors with salary greater than that of some (at least one) instructor

in the Biology department.

select distinct T.name from

instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology';

• Same query using > some clause

Set Comparison –

CS673 - Scalable Databases

select name

from instructor
where salary > some (select salary from instructor

where dept name =

'Biology');

Set Comparison –

CS673 - Scalable Databases

“some” Clause

(5 < some) = true

• F <comp> some r t r such (read: 5 < some tuple in the relation) that (F <comp> t)

Where <comp> can be: =

(5 < some) = false

0

5

6
0

5

Set Comparison –

CS673 - Scalable Databases

(5 = some) = true

(5 some) = true (since 0 5)

(= some) in

However, (some) not in

“all” Clause

Find the names of all instructors whose salary is greater than the salary of all instructors in

the Biology department.

0

5

0

5

Set Comparison –

CS673 - Scalable Databases

select name

from instructor

where salary > all (select salary from

instructor

where dept name = 'Biology');

CS673 - Scalable Databases

Definition of “all” Clause

 t r (F <comp> t) • F <comp> all r

(5 < all) = false

(5 < all) = true

(5 = all) = false

0

5

6 6

10
4

5

CS673 - Scalable Databases

(5 all) = true (since 5 4 and 5 6)

(all) not in

However, (= all) in

Test for Empty Relations

• The exists construct returns the value true if the argument subquery is

nonempty.

• exists r r Ø

• not exists r r = Ø

4

6

CS673 - Scalable Databases

Use of “exists” Clause

• Yet another way of specifying the query “Find all courses taught in both the Fall 2017 semester and

in the Spring 2018 semester”

select course_id

from section as S

where semester = 'Fall' and year = 2017 and
exists (select * from section as T

where semester = 'Spring' and year= 2018

and S.course_id = T.course_id);

• Correlation name – variable S in the outer query

• Correlated subquery – the inner query

CS673 - Scalable Databases

Use of “not exists” Clause
• Find all students who have taken all courses offered in the Biology department.

select distinct S.ID, S.name

from student as S
where not exists ((select course_id

from course where

dept_name = 'Biology')
except
(select T.course_id

from takes as T

where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

CS673 - Scalable Databases

• Note that X – Y = Ø X Y

• Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples

• The unique construct tests whether a subquery has any duplicate tuples in its result.

• The unique construct evaluates to “true” if a given subquery contains no duplicates .

• Find all courses that were offered at most once in 2017 select T.course_id

from course as T

where unique (select R.course_id

from section as R

where T.course_id= R.course_id

and R.year = 2017);

CS673 - Scalable Databases

Subqueries in the Form Clause
• SQL allows a subquery expression to be used in the from clause

• Find the average instructors’ salaries of those departments where the average salary is greater than $42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor group by dept_name)
where avg_salary > 42000;

• Note that we do not need to use the having clause

• Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor group by

dept_name)
as dept_avg (dept_name, avg_salary)

CS673 - Scalable Databases

where avg_salary > 42000;

With Clause

• The with clause provides a way of defining a temporary relation whose definition is available only

to the query in which the with clause occurs.

• Find all departments with the maximum budget

with max_budget (value) as

(select max(budget)

from department)

select department.name from

department, max_budget

where department.budget = max_budget.value;

CS673 - Scalable Databases

Complex Queries using With Clause

• Find all departments where the total salary is greater than the average of the total salary

at all departments

with dept _total (dept_name, value) as

(select dept_name, sum(salary)

from instructor group by

dept_name),

dept_total_avg(value) as

(select avg(value)

from dept_total)

select dept_name from

dept_total, dept_total_avg

CS673 - Scalable Databases

where dept_total.value > dept_total_avg.value;

Scalar Subquery

• Scalar subquery is one which is used where a single value is expected

• List all departments along with the number of instructors in each department select dept_name,

(select count(*) from

instructor

where department.dept_name = instructor.dept_name)

as num_instructors

from department;

• Runtime error if subquery returns more than one result tuple

CS673 - Scalable Databases

Modification of the Database

• Deletion of tuples from a given relation.

• Insertion of new tuples into a given relation

• Updating of values in some tuples in a given relation

CS673 - Scalable Databases

Deletion

• Delete all instructors delete from instructor

• Delete all instructors from the Finance department
delete from instructor where dept_name=
'Finance’;

• Delete all tuples in the instructor relation for those

instructors associated with a department located in

the Watson building.

delete from instructor

where dept name in (select dept name

CS673 - Scalable Databases

from department where

building = 'Watson');

Deletion

• Delete all instructors whose salary is less than the average salary of instructors delete from

instructor

where salary < (select avg (salary) from

instructor);

• Problem: as we delete tuples from instructor, the average salary changes

• Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or retesting the tuples)

CS673 - Scalable Databases

Insertion

• Add a new tuple to course insert into course values ('CS-

437', 'Database Systems', 'Comp. Sci.', 4);

• or equivalently

insert into course (course_id, title, dept_name, credits)

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

• Add a new tuple to student with tot_creds set to null insert

into student values ('3003', 'Green', 'Finance', null);

CS673 - Scalable Databases

Insertion

• Make each student in the Music department who has earned more than 144 credit hours an

instructor in the Music department with a salary of $18,000.

insert into instructor select ID, name,

dept_name, 18000

from student

where dept_name = 'Music' and total_cred > 144;

• The select from where statement is evaluated fully before any of its results are inserted into the

relation.

Otherwise queries like insert into table1

select * from table1 would cause problem

CS673 - Scalable Databases

Updates

• Give a 5% salary raise to all instructors update instructor

set salary = salary * 1.05

• Give a 5% salary raise to those instructors who earn less than
70000 update instructor set salary = salary * 1.05

where salary < 70000;

• Give a 5% salary raise to instructors whose salary is less than

average update instructor

set salary = salary * 1.05 where

salary < (select avg (salary)

from instructor);

CS673 - Scalable Databases

Updates

• Increase salaries of instructors whose salary is over $100,000 by 3%, and all others by a 5% •
Write two update statements: update instructor set salary = salary * 1.03 where salary >
100000;

update instructor set salary
= salary * 1.05 where
salary <= 100000;

• The order is important

• Can be done better using the case statement (next slide)

CS673 - Scalable Databases

Case Statement for Conditional Updates

• Same query as before but with case statement update

instructor

set salary = case when salary <= 100000 then salary *
1.05 else salary * 1.03

end

Updates with Scalar Subqueries

• Recompute and update tot_creds value for all students update student S

set tot_cred = (select sum(credits)

from takes, course

where takes.course_id = course.course_id and

CS673 - Scalable Databases

S.ID= takes.ID.and

takes.grade <> 'F' and takes.grade is not null);

• Sets tot_creds to null for students who have not taken any course

• Instead of sum(credits), use:

case when sum(credits) is not null then

sum(credits) else 0 end

END OF SESSION

